S after the addition of fusaricidin and observed that some genes involved in cation transport were significantly affected (Fig. 6). Zinc is an important cofactor of many enzymes and for protein folding and is transported by 3 uptake systems, yciABC, ycdHI-yceA, and zosA(ykvw). yciABC is regulated by Zur, which was the negative regulator of zinc uptake. In B. subtilis, the genetic response to zinc starvation included, as expected, the derepression of a MedChemExpress Lecirelin high-affinity zinc uptake system and a high-affinity zinc ABC transporter encoded by the ycdHI-yceA operon [23]. zosA is regulated by PerR, the peroxide sensing repressor, and is not inhibited by Zn2+. Zur also represses 3 genes (ytiA, rpmGC, and yhzA) that encode paralogs of ribosomal proteins [24]. The ytiA gene encodes an alternativeform of L31 that lacks zinc. L31, encoded by rpmE, is a small, zinccontaining protein that is associated with the large ribosomal subunit [25]. When zinc is limiting in the cell, YtiA is expressed, causing the displacement of L31 (RpmE) from the ribosome. This is thought to liberate zinc for essential cellular functions. Meanwhile, the B. subtilis Zur protein repressed the expressions of at least 10 genes in response to zinc. In our study, yciC, ycdH, and yceA, which are all involved in zinc transport, were upregulated. Concomitantly, we observed an upregulation of rpmC and yhzA. The above-mentioned results indicate that cells require more zinc to mount a defense against fusaricidin damage. The transport and oxidation stress response associated with ferrous ion and manganous are shown in Figure 7. The formation of intracellular reactive oxygen species (ROS) is potentially a byproduct of metabolism after fusaricidin treatment in an Arg8-vasopressin biological activity aerobic environment. Microorganisms have evolved an impressive array of mechanisms to adapt 23977191 to stress induced by virtually all types of ROS. One such regulator is PerR, a member of the ubiquitous Fur family of metalloregulatory repressors, which sense hydrogen peroxide. PerR uses a metal, Fe(II) or Mn(II), to activate operator DNA binding; however, PerR cannot bind Fe(II) or Mn(II) when H2O2 is present. Zn(II)-bound PerR appears to replace the Fe(II)or Mn(II)-bound species, which can lead to an increase in mrgA, katA, and ahpCF [26]. According to the speculation of Fuangthong [27] and Herbig [28], the inhibition of Mn(II) transport may be a way for cells to protect themselves. Sufficiently high concentrations of Mn(II) lead to significant PerR inhibition, which remains unaffected by the presence of peroxide. This would essentially prevent the induction of detoxification genes and limit the cell’sMechanisms of Fusaricidins to Bacillus subtilisFigure 8. Clustering analysis of 6 experiments. Six individual experiments are listed on the top of the figure, and the names of the genes are shown on the right. The similarities of the genes between the different experiments are indicated in different colors. Low expression is indicated in green; and high expression, in red. doi:10.1371/journal.pone.0050003.gability to mount a defense. However, when the Fe(II) concentration was gradually reduced, PerR activity in response to peroxide was restored. In B. subtilis, iron is transported through 3 steps: (1) threonine, glycine, and 2,3-dihydroxybenzoate are used as precursors to synthesize bacillibactin (BB) by dhbCAEBF; (2) BB is then exported from the cell by YmfE to combine with iron; and (3) Fe-BB is shuttled back into the cell via the ABC-typ.S after the addition of fusaricidin and observed that some genes involved in cation transport were significantly affected (Fig. 6). Zinc is an important cofactor of many enzymes and for protein folding and is transported by 3 uptake systems, yciABC, ycdHI-yceA, and zosA(ykvw). yciABC is regulated by Zur, which was the negative regulator of zinc uptake. In B. subtilis, the genetic response to zinc starvation included, as expected, the derepression of a high-affinity zinc uptake system and a high-affinity zinc ABC transporter encoded by the ycdHI-yceA operon [23]. zosA is regulated by PerR, the peroxide sensing repressor, and is not inhibited by Zn2+. Zur also represses 3 genes (ytiA, rpmGC, and yhzA) that encode paralogs of ribosomal proteins [24]. The ytiA gene encodes an alternativeform of L31 that lacks zinc. L31, encoded by rpmE, is a small, zinccontaining protein that is associated with the large ribosomal subunit [25]. When zinc is limiting in the cell, YtiA is expressed, causing the displacement of L31 (RpmE) from the ribosome. This is thought to liberate zinc for essential cellular functions. Meanwhile, the B. subtilis Zur protein repressed the expressions of at least 10 genes in response to zinc. In our study, yciC, ycdH, and yceA, which are all involved in zinc transport, were upregulated. Concomitantly, we observed an upregulation of rpmC and yhzA. The above-mentioned results indicate that cells require more zinc to mount a defense against fusaricidin damage. The transport and oxidation stress response associated with ferrous ion and manganous are shown in Figure 7. The formation of intracellular reactive oxygen species (ROS) is potentially a byproduct of metabolism after fusaricidin treatment in an aerobic environment. Microorganisms have evolved an impressive array of mechanisms to adapt 23977191 to stress induced by virtually all types of ROS. One such regulator is PerR, a member of the ubiquitous Fur family of metalloregulatory repressors, which sense hydrogen peroxide. PerR uses a metal, Fe(II) or Mn(II), to activate operator DNA binding; however, PerR cannot bind Fe(II) or Mn(II) when H2O2 is present. Zn(II)-bound PerR appears to replace the Fe(II)or Mn(II)-bound species, which can lead to an increase in mrgA, katA, and ahpCF [26]. According to the speculation of Fuangthong [27] and Herbig [28], the inhibition of Mn(II) transport may be a way for cells to protect themselves. Sufficiently high concentrations of Mn(II) lead to significant PerR inhibition, which remains unaffected by the presence of peroxide. This would essentially prevent the induction of detoxification genes and limit the cell’sMechanisms of Fusaricidins to Bacillus subtilisFigure 8. Clustering analysis of 6 experiments. Six individual experiments are listed on the top of the figure, and the names of the genes are shown on the right. The similarities of the genes between the different experiments are indicated in different colors. Low expression is indicated in green; and high expression, in red. doi:10.1371/journal.pone.0050003.gability to mount a defense. However, when the Fe(II) concentration was gradually reduced, PerR activity in response to peroxide was restored. In B. subtilis, iron is transported through 3 steps: (1) threonine, glycine, and 2,3-dihydroxybenzoate are used as precursors to synthesize bacillibactin (BB) by dhbCAEBF; (2) BB is then exported from the cell by YmfE to combine with iron; and (3) Fe-BB is shuttled back into the cell via the ABC-typ.